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Abstract—UAVs have a broad application prospect in the field 
of railway inspection due to their excellent mobility and flexibility. 
However, it still faces challenges, such as high human labor costs 
and low intelligence levels. Therefore, it is of great significance to 
develop a real-time intelligent rail recognition algorithm that can 
be deployed on the onboard computing device to guide the UAV’s 
camera to follow the target rail area and complete the inspection 
automatically. However, a significant issue is that rails from the 
perspective of UAVs may appear with changing pixel widths and 
various inclination angles. Concerning the issue, a general and 
adaptive rail representation method based on projection length 
discrimination (RRM-PLD) is proposed. It can always select the 
optimal representation direction, horizontal or vertical, to 
represent any kind of rails. With the RRM-PLD, a novel 
architecture (Real-Time Rail Recognition Network, TriRNet) is 
proposed. In TriRNet, a designed inter-rail attention (IRA) 
mechanism is presented to fuse local features of single rails and 
global features of other rails to accurately discriminate the 
geometric distribution of all rails in the image in a regressive way 
and thus improve the final recognition accuracy. Further, one-to-
one mapping from anchor points to final feature maps is 
established. It greatly simplifies the model design process and 
improves the model’s interpretability. Besides, detailed model 
training strategies are also presented. Extensive experiments have 
verified the effectiveness and superiority of the proposed 
formulation in terms of both network reasoning latency and 
recognition accuracy. 
 

Index Terms—Rail recognition; attention; UAV; anchor points; 
automatic railway inspection 

I. INTRODUCTION 
AILWAY inspection, especially inspection of facilities 
in the train running areas, is of great significance for the 
railway safety operation. Over the past decade, 

artificial intelligence (AI) empowered by deep convolutional 
neural networks has developed rapidly in various fields. 
Numerous AI models have been proposed and applied to visual 
tasks such as object detection [1], target tracking [2], and 
semantic segmentation [3, 4], and have achieved remarkable 
results. Researchers of the railway industry have also proposed 
a series of AI models for railway inspection works including 
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rail component detection [5-8], rail surface or fastener defect 
detection [9-12], and environmental hazard evaluation [13], etc. 
But there is no doubt that the establishment of all kinds of such 
AI models is completely inseparable from large-scale data. 
Traditionally, inspection workers and dedicated inspection 
trains are employed to collect relevant image data. However, 
the work efficiency of manual inspection is extremely low 
while the labor cost is high. The dedicated inspection trains 
cannot completely cover all important infrastructures in the 
entire train running area. They will also affect the normal 
configuration of the train running diagram. In addition, 
inspection workers and inspection trains can only undergo the 
inspection during the maintenance time window at night. In that 
case, the inspection quality can be adversely affected by the 
weak light condition to a large extent. 

Unmanned aerial vehicles (UAVs) can inspect objects in the 
air in a non-contact manner due to their excellent flexibility and 
maneuverability. Thus, they have been applied to a wide range 
of industries recently. Over the years, some researchers have 
noticed the potential of adopting UAVs for railway inspection 
applications. Previous works dedicated to UAV-based railway 
inspection include mainly two categories: image-based and 
point cloud-based inspection. The works on image-based 
inspection contain railroad track components inspection [7], 
small objects detection of railway scene [14], rail surface 
defects detection [9, 10], rail fastener defect inspection [15], 
catenary support device inspection [16], railway infrastructure 
monitoring [17], railway scene image dehazing to enhance the 
effect of railway object detection [18], and railway scene 
parsing [19]. The works on point cloud-based inspection 
contain rail track detection [20], contact wire measurement with 
LiDAR [21], and full-range railway environment segmentation 
[22]. However, in these works of adopting UAVs to conduct 
railway inspection, the data collection of specific objects is 
completed by manually manipulating the UAVs. The process 
takes up much time and has very low work efficiency and 
intelligence level because of too much manual intervention to 
adjust the attitudes of the UAV and the gimbal during the flight, 
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which will inevitably slow down the data collection process 
greatly.  

The onboard edge computing devices endow UAVs with 
computing power and make it possible to fulfill UAV-based 
automatic data collection of the train running area without 
excessive human controlling intervention. To achieve that, it is 
quite essential to develop rail recognition algorithms that can 
be deployed and run on the onboard edge computing devices in 
real-time to guide the UAV’s camera to follow the target train 
running area automatically, as shown in the technical roadmap 
for UAV-based onboard automatic rail recognition in Fig. 1. 

 
Fig. 1. UAV-based onboard automatic rail recognition. 

Different from the images by train-mounted cameras in 
which the geometric position distribution of the rails fluctuates 
within only a tiny range and remains roughly in the same 
relative direction. In contrast, the inclination angles of the rails 
in the UAV's view can change greatly as it moves and rotates 
all the time, as shown in Fig. 2. Moreover, since the focal length 
of the camera and the relative flying height between the UAV 
and the rails always change from time to time, the pixel width 
of the rail from the UAV's perspective may also vary sharply 
from only a few pixels to 70 more pixels at 1080p image size. 
Thus, these issues along with the changeable environment on 
both sides of the railway bring a great challenge to the task of 
rail recognition. Previous works [5-8] have been developed for 
multiple rail components detection that covers rail recognition, 
but they all investigate completely different kinds of rail images 
under a far smaller and fixed field of view, in which only one 
evident rail exists. This makes it easier for them to accomplish 

rail recognition. [23] developed a track segmentation network 
that is far from efficient and not capable of being deployed on 
onboard computing devices. Segmentation-based methods must 
adopt some post-processing method to obtain the final line 
prediction (like least squares linear regression) from many 
discrete segmented pixels. Thus, this kind of method is slowed 
down further and suffers a lot from the possible predicted FP 
pixels. Therefore, they cannot be directly adopted for the work 
involved in this paper. Concerning these issues, this paper 
proposes a general and adaptive rail representation method and 
a real-time attention-aware rail recognition network that can be 
run on the onboard computer in real-time. The main 
contributions of this paper are summarized as follows: 

(1) Aiming at the challenge that the directions of the rails 
from the perspective of UAVs are arbitrary and vary from time 
to time, a general and adaptive rail representation method based 
on projection length discrimination (RRM-PLD) is proposed, 
which can always select the optimal representation direction to 
represent any kind of rails. 

(2) To accurately discriminate and identify the geometric 
characteristics of rails, an attention-aware real-time rail 
recognition network (TriRNet) is proposed for the UAVs’ 
onboard edge computing devices, in which the designed inter-
rail attention (IRA) mechanism can fuse local features of single 
rails and global features of all rails and thus improve the final 
recognition accuracy. 

(3) Focusing on the task of line-shaped structure detection, 
one-to-one mapping from anchor points to final customized 
feature maps for proposal generation is established to simplify 
the complexity of the network design process and improves the 
network interpretability. 

The following part of this paper is organized as follows: 
Section II presents some previous works related to the research 
of this paper. Section III gives a detailed description of the 
proposed RRM-PLD based on projection length discrimination, 
deep rail recognition architecture, and the corresponding 
training strategies. Section IV makes a detailed experimental 
design elaborations and relevant result analysis and verifies the 
effectiveness and the superior performance of the proposed 
approach in terms of both inference latency and recognition 
accuracy. Section V concludes this paper. 

   
Fig. 2. Comparison between the images collected by the 
vehicle-mounted camera and that collected by UAVs. 

II. RELATED WORKS 
Different from the familiar lane detection task, rail 

recognition has not attracted enough attention from relevant 
researchers before because of the particularity that the traveling 
of trains is completely restricted by rails. But with the 
application of UAVs in the field of railway inspection, rail 

Onboard Computer

Preprocessing and 
real-time rail 

recognition network

UAV-Based Onboard Automatic Rail Recognition

UAV

original image

rail recognition result



3 
 

recognition has become essential. At present, according to our 
best knowledge, there is no mature algorithm that can be 
applied to perform rail recognition for UAV remote sensing 
images directly. [20] used UAV point clouds to perform 3D 
model construction and rail track detection but it cannot 
produce real-time detection results. [23] developed a railway 
track segmentation network that runs on a large graphics card 
(NVIDIA Tesla V100). Their processing scheme and reasoning 
speed are completely not applicable to making real-time 
feedback decisions to the UAV and thus limit their application 
to onboard computers. Besides, this kind of traditional approach 
considers the detection of the line-shaped rails as a simple 
discrete pixel-wise segmentation task, introducing unnecessary 
convolution calculation and resource consumption. Moreover, 
additional curve-fitting operations from many segmented 
discrete pixels are needed to obtain the final line geometry. 
Despite that, the lane detection task benchmarked on CULane 
[24], TuSimple [25], and LLAMAS [26] has made great 
progress recently, providing a good reference for this work. 

The existing lane detection algorithms can be roughly 
divided into three different kinds of methods: parametric 
prediction methods, segmentation-based methods, and anchor-
based methods. The parametric prediction methods formulate 
the lanes in the image as curve equations, including 
PolyLaneNet [27] and LSTR [28] based on transformer [29]. 
The parameters of the polynomial lane curve equation are 
predicted directly with deep neural networks. But this kind of 
method does not adapt to the changing inclination angles of the 
rails from the perspective of UAVs due to the limitations of the 
determined equation form. Moreover, their model accuracy still 
needs to be improved further. The segmentation-based methods 
[24, 30-35] predict the lanes at the pixel and instance levels. But 
the discreteness of the predicted pixels limits the accuracy of 
the detection results, and some post-clustering methods are 
developed to address the problem [31, 35]. However, the lane 
marker is represented as a mask, not a line-shaped object which 
is inefficient to describe lanes. The existing state-of-the-art 
architectures are basically all anchor-based methods which can 
be categorized into two different kinds. The first kind [36-39] 
determines the final line proposal for lane marker by regressing 
a relative location to the predefined line-shaped anchors, which 
are adapted from the box-shaped anchor-based object detection 
architectures such as Faster R-CNN [40] and Mask R-CNN 
[41], and thus are complex to formulate a customized and 
suitable anchor group. Also, some work such as [39], has 
developed a very effective attention mechanism to realize 
parameters regression and line proposal generation by fusing 
attention-guided global features and local features. The second 
kind [42-46] formulates the lane markers by a series of row 
anchors more efficiently and succinctly. The locations of the 
lane markers are determined by choosing the best location at 
each row of the gridded image. Therefore, the lane markers are 
finally predicted by a series of anchor points row-wisely which 
can be optimized by easily adding more line-shape-related 
constraints to the formulation. Despite the high performance of 
the anchor-based methods, they still cannot solve the challenge 
of diverse and changing rails from the perspective of UAVs. 

III. METHODOLOGY 
In this section, the proposed anchor point-based RRM-PLD 

is discussed firstly, which is based on the projection length 
discrimination and the concept of one-to-one mapping from the 
anchor points to the features in the final extracted feature maps. 
The representation method can be applied to rails at various 
viewing angles for the UAVs. Next, an attention-aware deep 
convolutional neural network architecture is presented to 
complete the effective and real-time rail recognition task with 
the proposed one-to-one mapping rail representation method. 
Then the method for the generation of the predicted rail 
proposals is presented. Next, the detailed training strategy of 
the whole proposed model is introduced, mainly including the 
balanced transpose co-training strategy and the design of the 
dedicated integrated loss function. Finally, the coordinates 
transformation between the pixel coordinates and the anchor 
point-based gridded coordinates is introduced. 

A. Rail Representation 
Inspired by the concept that lines can be represented by 

certain points sampled from them, this paper attempts to 
represent each rail by a series of uniformly sampled points from 
the image. But a rail can be sampled from both horizontal and 
vertical directions. As illustrated in Fig. 3, a horizontal and a 
vertical positioning line are plotted in the figure respectively, 
which are adopted to position the rails in the image. Both kinds 
of positioning lines are first discretized, that is, they are divided 
into many gridding cells, each of which represents a valid 
location where the rails can possibly pass through. All these 
locations are called anchor points. An additional cell is attached 
at the end of each positioning line to indicate the location where 
no rail exists on the entire positioning line. Green and red circles 
are exploited to represent the actual locations of different rails. 

 
Fig. 3. Rail representation based on positioning lines and 
anchor points. Anchor points corresponding to gridding cells 
existing in the positioning lines indicate locations for rails.  

More specifically, suppose the height and width of the image 
are h and w respectively, it is needed firstly to select a direction 
of the positioning line to be used, i.e., horizontal or vertical. The 
number of positioning lines in the horizontal or vertical 
direction is denoted as the sample dimension ds. The number of 
gridding cells that discretize the positioning lines is denoted as 
the gridding dimension dg+1. Among all the dg+1 cells for one 
positioning line, the best anchor point can always be found in 
that positioning line to represent the location of each rail. The 
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number of positioning lines used for sampling rails is far 
smaller than the image size, i.e., ds≪h and ds≪w, which brings 
superior advantages to the reduction of the amount of 
calculation. All the rails can be represented with these ds×(dg+1) 
anchor points and each rail can be represented by ds uniformly 
sampled anchor points as shown in Fig. 4. Then the j-th rail can 
be formulated as a set of anchor points, denoted as 𝑃𝑃𝑗𝑗 =
�𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑗𝑗�, in which i=1, 2, …, ds and 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑗𝑗 ∈ �1, 2, … ,𝑑𝑑𝑔𝑔 + 1�. 
Further, since different directions of positioning lines lead to 
different representations, rails under horizontal and vertical 
positioning lines are denoted as 𝑃𝑃𝑗𝑗ℎ and 𝑃𝑃𝑗𝑗𝑣𝑣 respectively. 

 
Fig. 4. The RRM-PLD with ds = 7 and dg = 14 and illustration 
of the one-to-one mapping from the anchor points to the final 
customized feature maps for proposal generation. 

Thus, the same rail can be represented by two groups of 
anchor points h

jP  and v
jP , the number of which is ds for each 

group. However, not all these ds anchor points are valid because 
of the existence of invalid anchor points that indicates no rail 
exists in the current row or column. The valid number of anchor 
points in the representation group is defined as the projection 
length, denoted as h

j   and v
j  corresponding to horizontal and 

vertical positioning lines respectively. For example, as shown 
in the left two images in Fig. 4 with a sample dimension ds being 
7, the valid projection length for the rails based on the 
horizontal positioning lines is 7 and the valid projection length 
based on the vertical positioning line is 3. It is believed that the 
larger the projection length is, the more sampled valid points 
there are, and then the closer it is to the real shape of the rail. 
Hence, the final anchor points-based representation for the j-th 
rail can be determined by projection length discrimination: 

 { } ,   
max ,  ,  

,   

h h v
j j jh v

j j j j v h v
j j j

P if
P

P if
 ≥= =  <

 

  

 

 (1) 

But if there exist N rails at most in the image, then all N rails 
can be represented by (P1, P2, …, PN). Because all the N rails 
are involved in the model training process, the projection length 
for the multiple rails in a whole image is determined by: 

 1 1,  h v
h j v jj jN N
= =∑ ∑     (2) 
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Hence, the final projection length for the whole image in Fig. 
4 is 7 and the representation with the horizontal positioning 
lines is more suitable to complete the recognition task. To 
satisfy this representation of rails, the projection lengths of the 
rails of different representation directions are supposed to be 
predicted to realize adaptive rail representation. 

Additionally, the RRM-PLD has also designed a one-to-one 
mapping relationship established to accomplish the global rail 
recognition across the whole images between anchor points and 
the final extracted feature maps which are used to perform 
classification (selecting the best location along the direction of 
the positioning lines), as illustrated in Fig. 4. With this simple 
but effective one-to-one mapping, a real-time attention-aware 
rail recognition network is proposed. 

B. Attention-Aware TriRNet Architecture 
The relative spatial locations across different rails are 

important for rail recognition. Generally, the features of a single 
rail are locally limited, so it is expected that a more global and 
sufficient feature can be obtained to realize the discrimination 
of the geometric features of the rails. To determine which rail 
representation direction is more adaptive and representative of 
the currently processing image, the inter-rail attention (IRA) 
module is proposed to complete the spatially geometric feature 
discrimination of rails, which can detect rails by not only 
exploiting the feature of the current rail but also absorbing the 
features of other extra rails in the image. 

As depicted in Fig. 5, the backbone makes use of the most 
commonly used ResNet [47] to extract rich global features from 
the input railway scene UAV aerial image, generating a down-
sampled multi-layer feature map 'C H W

backF × ×∈ . To reduce the 
computing cost of the forward inference, an additional 1×1 
convolution is attached to Fback, producing thinner feature maps 

C H W
RF × ×∈ . FR is then flattened and reshaped as a linear vector 

C H W
LinF ⋅ ⋅∈ . Then FLin is further functioned by a linear space 

transformation (also called fully connected layer) to generate a 
new global feature vector (  1)s gd d N

globF ⋅ + ⋅∈  , which can be 
described by: 
 0 0glob LinF F= +W b  (4) 

in which (  1)
0

s gd d N C H W⋅ + ⋅ × ⋅ ⋅∈W  and (  1)
0

s gd d N⋅ + ⋅∈b  hold. Finally, 
the Fglob is exploited to realize the attention mechanism and the 
final rail recognition based on the anchor points representation. 

Through a reasonable and artful design, this paper establishes 
a one-to-one mapping between anchor points and the final 
feature maps for classification along the direction of the 
positioning lines. However, anchor points can be represented in 
two ways with horizontal or vertical positioning lines, 
respectively. As shown in Fig. 4, these two representations 
correspond to two different dimension patterns of the feature 
maps, respectively. The dimension of the anchor points and the 
corresponding feature map for each rail is ds×(dg+1) with the 
horizontal positioning lines. Similarly, the dimension with the 
vertical positioning lines for each rail is (dg+1)×ds. Fglob is 
reshaped to FH and FV at the same time, where (  1)s gd d N

HF × + ×∈  
and (  1)g sd d N

VF + × ×∈ always hold. 
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Fig. 5. The proposed deep convolutional network architecture TriRNet for UAV-based rail recognition. 

There are two purposes for FH and FV: (1) to generate the 
subsequent global feature vectors by inter-rail attention module 
which are utilized to regress the starting location and the 
projection length for each rail; (2) to complete the rail proposal 
generation process according to the corresponding direction of 
positioning lines. The regressed projection lengths are supposed 
to discriminate the geometric features of the rails, which helps 
to choose a better rail representation direction. The feature maps 
FH and FV are supposed to be classified along the direction of 
the corresponding positioning lines. The locations of the anchor 
points corresponding to the largest feature value are selected. 
These locations can correspond one-to-one with specific pixels 
in the image and finally generate the predicted rail proposal. FH 
and FV exist in the network at the same time and both participate 
in the training process. Fglob generates FH and FV at the same 
time, thus forming a special dual-branch architecture (DBA).  

There are two forms of maximum feature extraction (MFE) 
methods corresponding to the two representation directions. 
The maximum local feature vector loc

iv  corresponding to the i-
th feature map of FH or FV can be obtained by the MFE process. 
However, no matter which representation method is used to 
obtain the final feature maps, i.e., FH and FV, the maximum 
local feature vector loc

iv   can be obtained according to the 
direction of its positioning line： 

 
; ,

;  ,

max

max

loc
ij

loc
ij

H j kk

V k jk

F

v F

v =

=




 (5) 

in which 1,2,..., sj d=  , 1,2,..., 1gk d= +  , and sloc
i

d∈v   is a local 
row feature vector, denoted as 1 2[ , ,..., ]

s

loc loc loc loc
i i i idv v v=v . loc

iv  is then 
exploited to conduct feature fusion with the extra 1N −  local 
feature vectors in a weighted way. All weights are obtained by 
a softmax process functioned onto another linear space 
transformation layer Latt, which transforms the ds-dimensional 
feature vector loc

iv   to 1N −   weight values which are finally 
used for inter-rail attention calculation: 

 ( )loc loc
att i iL = + vWv b  (6) 

 in which ( )1 sN d− ×∈ W  and 1N −∈ b . Then the weights for loc
iv  

to output a global feature vector glob
iv can be computed as: 

 

( )( )

( )( )
,

1

0,                                      

,

,         

     

 

loc
att i j

i j

loc
att i j

if j

if j

softmax L i

w i

softma if jx L i
−

=

>

 <

= 



v

v

 (7) 

where 1,2,...,i N=  and 1,2,...,j N=  . The softmax activation 
function is utilized to create a normalized probability 
distribution that can be used for conducting weighted addition 
operations on multiple local feature vectors. Then the global rail 
attention feature vectors can be calculated by: 
 ,

glob loc
i i j j

j
w= ∑v v  (8) 

where 1,2,...,i N= , 1,2,...,j N= , and sdglob
i ∈v  is a global row 

feature vector with the same dimension as loc
iv  . Let 

1 ,...,loc loc loc
N =  V v v   be the local feature matrix containing all 

local row feature vectors and ( ),i j N N
w

×
=W   be the calculated 

weight matrix denoted in (7). Then the global features obtained 
by the inter-rail attention module can be formulated as: 
 glob loc=V WV  (9) 
in which sN dloc ×∈V   , N N×∈W    and sN dglob ×∈V   . As can be 
seen, Vloc and Vglob have the same matrix dimensions. In general, 
the inter-rail attention mechanism proposed in this paper is a 
series of linear space transformations across all the local feature 
vectors loc

iv . The attention mechanism can effectively fuse all 
local features to generate global features b

i
glov across different 

rails, which is more beneficial to take the global context 
information of the whole image into account. In this way, the 
focus of the network can be concentrated on those key anchor 
points of interest and thereby improving the recognition 
accuracy of rails. The loc

iv  and b
i
glov  are finally concatenated to 

perform the regression of the geometric parameters, i.e., start 
location and projection length of the rails in the image. The 
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regression process is formulated as: 
 ˆˆ( , ) FC( )loc glob

i i i is = ⊕ v v  (10) 

C. Proposal Generation 
As denoted in (5), the local feature vectors loc

iv  are obtained 
from FH and FV. Also, the final predicted rail proposals are to 
be generated from these two feature maps in a similar principle. 
For the possible N rails existing in an image to be detected, each 
rail is connected to a feature map layer in FH and FV. For FH, 
the predicted locations for the i-th rail can be formulated as: 
 ; ,  ;  ,arg maxH i j H j k

k
Loc F=  (11) 

Combining the regressed starting location îhs  and projection 
length ˆ

ih , the predicted rail represented by horizontal anchor 
points can be determined. For FV, the predicted locations for the 
i-th rail can be formulated as: 
 ; ,  ;  ,arg maxV i j H k j

k
Loc F=  (12) 

Also, the predicted rail represented by vertical anchor points 
can be determined with the regressed starting location îvs  and 
projection length ˆ

iv . Thus, two kinds of different predicted rail 
proposals can be obtained by formulas (11) and (12). As 
mentioned before, the final proposals are decided by projection 
length discrimination. Suppose the mean projection lengths 
corresponding to the horizontal and vertical anchor points based 
representations are ˆ

h   and ˆ
v  , respectively. Then they can be 

calculated as: 

 1 1ˆ ˆ ˆ ˆ,  h ih v ivi iN N
= =∑ ∑     (13) 

The projection length discrimination derived from the inter-
rail attention module is then applied. If ˆ ˆ

h v≥   holds, then (11) 
can be exploited to produce the final rail proposals; if ˆ ˆ

h v<   
holds, then (12) is exploited to produce the final proposals. 

D. Loss Design and Model Training 
As discussed before, this paper constructs a dual-branch 

architecture based on inter-rail attention regression, projection 
length discrimination, and one-to-one mapping from 
represented anchor points to final extracted feature maps. With 
the dual-branch architecture, the training of the two branches of 
the network is implemented in a weighted manner, and the 
weights are calculated according to the corresponding two 
kinds of regressed projection lengths, denoted as: 
 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ,  h h v v h v

h vw e e e w e e e= + = +       (14) 

In this way, the computed losses of the two branches can be 
weighted by wh and wv when performing loss back propagation 
during the network training process. With this weighted training 
mode, it is obvious that the angular distribution of rails in the 
image has an important influence on the training of both 
branches. When the inclination angles of rails distributed in the 
training dataset are closer to being horizontal, the training of the 
vertical branch that corresponds to FV is more effective; when 
the inclination angles distributed in the training dataset are 
closer to being vertical, then the training of the horizontal 
branch that corresponds to FH is more effective. In fact, the 

branch that corresponds to a larger projection length and 
representation direction always gets a larger weight to update 
its parameters. Basically, in the existing datasets, the angular 
distribution of the rails cannot be completely uniform, which is 
also confirmed by the statistics of the datasets used in this paper. 
Therefore, this paper adopts a balanced transpose co-raining 
strategy (BTCS) to effectively train both branches of the 
network in a more balanced way, so as to adapt to the uneven 
distribution of the inclination angles of rails existing in the 
images in the dataset. 

Now given an image I, consider the image as a matrix, and 
its transposed image is denoted as IT. If the geometric direction 

 

Algorithm 1: Training and testing of TriRNet 
  Input: Training or testing set    and its rail label set   : 

( , )h vL L  , in which ,{ }h h
k i jL loc=   and ,{ }v v

k i jL loc=  , i = 
1, …, N and j = 1, …, ds. N ← max number of rails. 

  Output: Network parameters Θ . 
  1. Let 0η  ← initial learning rate. 
  2. Let backbone mapping function 0: I→(FH, FV), in which 

(  1)s gd d N
HF × + ×∈  and (  1)g sd d N

VF + × ×∈ . 
  3. for epoch in range (Nepoch) do 
  4.    for image and rail label { ,( , , )}h vn I L L  in ( , )   do 
  5.      Let IT and (LhT, LvT) ← the transpose of I and its rail 
           label derived from (Lh, Lv). 
  6.      step = epoch n⋅ +  
  7.      Let ,h v  ← the mean num of valid points in Lh, Lv. 
  8.      (FH, FV) = 0(I), ( , )loc loc

H VV V  = MFE(FH, FV) 
  9.      ( , ) IRA( , )glob glob loc loc

H V H V=V V V V  
10.      ( , ) ( , ) ( , )glob glob loc loc

H V H V H V= ⊕V V V V V V   
11.      ˆ ˆ( , ) [FC( , )]h v H Vmean= V V 

    // fully connected layer 
12.      ; ,  ;  ,arg maxH i j k H j kLoc F= , ; ,  ;  ,arg maxV i j k H k jLoc F=  
13.      if testing then 
14.          output rail proposal HLoc  if ˆ ˆ

h v>   else VLoc  
15.          continue 
16.      end if 
17.      ( )h h v

hw e e e= +   , ( )v h v
vw e e e= +    

18.      ( , ) ( , )h v
h H

O
s Vl vc w classify Loc L w classify Loc L← ⋅ + ⋅  

19.      ˆ ˆ1( , ) 1( , )hO
reg

h v vsmoothL smoothL= +     
20.       Repeat 7-19 for IT, (LhT, LvT) to obtain T

HLoc , T
VLoc , 

           T
cls , T

reg . 

21.      ( ) / 2O
cl cls ss

T
clL= +  , ( ) / 2O

reg
T

reg reg= +    
22.      ( )T T

TC H V V Hmean Loc Loc Loc Loc← − + −  

23.      
TCcls regα β γ= + +    , ( )t bp∇Θ =   

24.      η ←LRScheduler(steps, 0η ), 1t t tη+Θ = Θ − ∇Θ  
25.    end for 
26. end for 
27. return Θ  
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of the rails in the image I is closer to being horizontal, then the 
vertical branch in the network will be trained more effectively. 
But if IT is also input into the network for training, the horizontal 
branch in the network can also be trained to the same extent. On 
the other hand, if the geometric direction of the rails in the 
image is closer to being vertical, then the horizontal branch in 
the network will be trained more effectively. But if IT is also fed 
into the network for training, then the vertical branch in the 
network can also be trained to the same extent in the same way. 
Therefore, this paper proposes to input the original image and 
the transposed image into the network simultaneously when 
training the network. In this way, the weights wh and wv are just 
reversed, and both branches have more balanced reasoning 
capabilities. 

In fact, based on the labels of I and IT, the horizontal 
representation of the image I should be completely consistent 
with the vertical representation of the image IT. Similarly, the 
vertical representation of the image I should be completely 
consistent with the horizontal representation of the image IT. 
However, based on the predictions of I and IT, there exist 
specific differences between them. These differences should be 
gradually reduced during the training process. Based on this 
difference, we propose the transpose consistency loss (TCL) 
function. In this paper, the loss consists of three parts: 
classification loss, regression loss, and transpose consistency 
loss. 

Classification loss. As denoted in (11) and (12), the FH and 
FV are the final feature maps adopted to generate the rail 
proposals through classification. Thus, both the horizontal 
branch and the vertical branch have their own classification 
results, as well as classification losses. The two kinds of 
classification losses for the original input image are combined 
in a weighted way and formulated as follows: 
 h clsh

O
v ccls lsvw w= +    (15) 

in which O
cls is the general classification loss. clsh and clsv  are 

the classification loss corresponding to the two branches, 
respectively. Similarly, the classification losses for the 
transposed image are computed as follows: 
 h cls

T T
h

T
cls cl vv sw w= +    (16) 

Then, the final classification loss is defined as the mean of the 
classified loss for the original image and the transposed one. 
 ( ) / 2O T

cls cls cls= +    (17) 
Regression loss. As discussed before, the local feature vector 

loc
iv  and the global feature vector b

i
glov  are finally concatenated 

to regress the start location îs   and the projection length ˆ h
i  . 

Here the Sooth L1 loss function is adopted to achieve the 
regression process. The general regression loss O

reg   is 
computed as: 
 regh

O
reg regv= +    (18) 

in which regh  and regv  are the regression loss corresponding to 
the two branches, respectively. Similarly, the counterpart 
regression loss for the transposed image is computed as follows: 
 T T T

reg regh regv= +    (19) 
Consequently, the final regression loss for the start location and 
the projection length is defined as the mean of the regression 
loss for the original input image and its transposed counterpart. 

 ( ) / 2O
reg

T
reg reg= +    (20) 

Transpose consistency loss. Along with the balanced 
transpose co-training strategy and based on the correspondence 
between the predicted rail proposals of I and IT, a consistency 
loss can be formulated by modeling the distance between the 
predictions of I and IT . Let ; ,  H i jLoc  and ; ,  V i jLoc  obtained from 
FH and FV denote the two predictions of the image I. Let 

; ,
T
H i jLoc   and ; ,

T
V i jLoc   denote the two predictions of image IT. 

Then the transpose consistency loss LTC which is a second-order 
difference constraint can be computed as: 

 ( ); , ;  , ; , ;  ,
1 1

1 sdN
T T

TC H i j V i j V i j H i j
i js

Loc Loc Loc Loc
Nd = =

= − + −∑∑

 (21) 
in which  ,i jLoc  and ,

T
i jLoc  are the predicted j-th sampled point 

of the i-th rail for image I and IT respectively. It is worth noting 
that the transpose consistency loss is constructed based on the 
above-mentioned balanced transpose co-training strategy. 

Then, an integrated structural loss function is presented as: 
 

TCcls regα β γ= + +     (22) 
in which ,   and α β γ  are loss coefficients. In this paper, this 
integrated loss function is finally exploited to train the whole 
dual-branch architecture. The three coefficients are all taken 
simply as 1.0 when used in the training process. 

Pseudo code for training and testing of TriRNet. A 
detailed pseudo code for the training and testing of TriRNet is 
given in Algorithm 1. The main steps for forward inference, the 
strategy for the use of the transposed images, the computation 
of the proposed structural loss, and the learning rate scheduler 
are involved. 

IV. EXPERIMENTS 

A. Datasets and Parameter Setting  
To evaluate the effectiveness and overall performance of the 

proposed architecture, this paper establishes a new dataset on 
rail recognition. All the images are collected by a multi-rotor 
UAV DJI M300 RTK carrying a multi-sensor integrated 
payload DJI Zenmuse H20T. The flight height of the UAV 
relative to the railway plane is usually set at 50-80m and a 
lateral distance of 10-20m is also adopted to avoid the 
accidental drop of the UAV on the railway line and thus ensure 
the safety of railway normal operations. The moving speed of 
the UAV is usually set to 1-3m/s to ensure the good quality of 
the collected images. All images used in the experiments are 
taken from Beijing-Shanghai high-speed railway and several 
ordinary railway scenes under this distance and moving speed 
setting. The constructed dataset includes 1116 images in all, in 
which the training set includes 893 images and the test part 
includes 223 images. The datasets contain abundant images 
with changeable pixel width and inclination angles of rails to 
enhance the generalization ability of the proposed models. Also, 
the images in the dataset have various changing backgrounds, 
as shown in Fig. 6, for the sake of a fairer evaluation of the 
model capabilities. 

The proposed TriRNet and its incomplete versions in 
Ablation Study are all trained with the same hyperparameter 
setting. Their training is implemented by Adam Optimizer with 
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a momentum of 0.9. The batch size, initial learning rate, and 
epoch are 16, 10-2, and 500, respectively. If the initial weights 
of the network are transferred from another trained model, then 
the initial learning rate is set to 10-4. The learning rate is 
adjusted dynamically during training by a multi-step learning 
rate scheduler. It is reduced to one-tenth and one-hundredth of 
the initial learning rate at the 25th and 38th training steps. All 
neural network modules involved in this paper are implemented 
in PyTorch deep learning framework.  

B. Evaluation Metric 
F1 measure is the most used metric in the lane detection task 

of road traffic. For the evaluation of different rail recognition 
algorithms, the F1 measure is adopted, which is defined as: 

 21 P RF
P R
× ×

=
+

 (23) 

where TPP
TP FP

=
+

, TPR
TP FN

=
+

.  

 
Fig. 6. Various kinds of railway scenes from the perspective of 
UAVs, in which rails can have utterly different pixel widths, 
inclination angles, and changing backgrounds. 

As depicted in Fig. 7, a rail proposal of TriRNet is composed 
of a series of classified and activated anchor points. For a single 
anchor point, it is classification. But for a whole rail proposal, 
it is composed of a series of activated anchor points. Given a 
predefined pixel width, these grouped points are then 
considered as a whole to perform IoU calculation with the 
corresponding ground truth rail target, which is also composed 
of a series of sampled points. In CULane [24] lane detection 
dataset, each lane is treated as a 30-pixel-width line. In this 
paper, all rails are treated as 28-pixel-width lines, considering 
that 28 pixels are the 3/4 quantile in the statistics counted on the 
pixel widths of all rails in images of the whole dataset. As 
shown in Fig. 7, The IoU value between the predicted rail 
proposal and the corresponding ground truth is calculated. 
When the computed IoU is larger than θ, the proposal is treated 
as true positives (TP); when the IoU is smaller than θ, the 
proposal is then treated as false positives (FP). The rails actually 
exist but are not detected are counted as false negatives (FN). θ 
represents the IoU threshold and is usually taken as 0.5 in the 
CULane lane detection dataset. Here the mF1 measure [46] is 
finally adopted to evaluate the algorithms, which is defined as: 
 ( )1 1@30 1@50 1@75 / 3mF F F F= + +  (24) 
where F1@30, F1@50, and F1@75 are F1 metrics when IoU 
thresholds θ are taken as 0.3, 0.5, and 0.75, respectively. The 
reasonable range for mF1 and other F1 metrics (including the 
adopted F1@30, F1@50, and F1@75) are expected to be 
distributed between 0 and 1.0. For ease of comparison, they are 
all scaled between 0 and 100 in the following sections, which is 
100 times the original values. 

C. Ablation Study 
In this section, a series of ablation studies on the network 

designs are performed. Starting from a baseline model, the 
effectiveness of the inter-rail attention (IRA) design is first 
presented. Then the two dimensions, i.e., the sampling 
dimension and the gridding dimension of the RRM-PLD, are 
investigated. At last, the effects of the proposed designs of the 
network and the two dimensions of the rail representation on 
the inference speed of the network are studied. 
1) Ablation on the Inter-Rail Attention Mechanism 

Starting from a baseline [43], which only applies one branch 
to conduct the rail recognition, the design of DBA and IRA on 
the network architecture and the design of BTCS and TCL on 
the model training are all discussed. From the designing process 
of the proposed architecture, it can be easily concluded that the 
BTCS can only be applied when the DBA is added to the 
architecture, and the TCL can only be applied when the BTCS 
is adopted in the network training process. The IRA design is 
completely independent of the other designs and can be applied 
to the network whenever needed. 

As shown in the top three rows of Table I, the original 
baseline models with different backbones are presented. The 
results show that the capability of the baseline model is far from 
satisfactory and this is caused by the architecture itself, not by 
the ability of the backbones. Then the designs of DBA, BTCS, 
and TCL are gradually applied to the baseline models, as listed 
in the next three rows in Table I. As can be seen, the mF1 
measure is increased from the original 12.75 to 51.35, 59.90, 
and 67.09 respectively, which demonstrates the effectiveness of 
the DBA, BTCS, and TCL design. Next, the IRA module is 
further added to the architecture. At first, only the DBA and the 
IRA are adopted. The mF1 value has been greatly improved 
compared to the baseline series and outperforms the model that 
only applies the DBA design, which is illustrated in row 7 of 
Table I. The results also imply the effectiveness of the single 
IRA design. Then the four designs are applied to the 
architecture, as shown in row 8 of Table I, the mF1 measure is 
increased to 66.72, which is very close (almost equal) to row 6 
without transferring the network weights of the trained model 
in row 5. Because TCL is a kind of unsupervised loss function 
that can bring unexpected fluctuations to the network training 
process, transferring pre-trained network weights, and training 
with a lower learning rate can reduce the adverse effect of this 
fluctuation on the network training process. Therefore, both 
row 6 and row 9 take advantage of the weights transferred from 
the trained model of row 5. With all these four designs 
integrated into the architecture and initializing the network with 
the transferred weights, the accuracy of rail recognition has 
reached a higher level of 73.68. And the F1@30, F1@50, and 
F1@75 all reach a higher level, i.e., 85.49, 79.25, and 56.29 
respectively, compared to other formulations. DBA, BTCS, and 
TCL are three basic designs to formulate the whole rail 
architecture while IRA performs as an enhancement module to 
improve the recognition accuracy in an attention-aware way. 
Rows 4-8 also indicate that the backbone resnet18 has enough 
capability to conduct rails recognition for UAV aerial images. 
2) Ablation on the Sampling Dimension 

As discussed in the Methodology section, a one-to-one 
mapping from the anchor points and the final extracted feature 
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Fig. 7. Illustration of the IoU calculation between the predicted 
proposal and corresponding ground truth. The proposal is 
treated as TP / FP case when IoU ≥ θ/ IoU < θ. 
maps which are used to perform classification is established as 
illustrated in Fig. 4, in which there exist two different 
dimensions to locate the sampled rail points and indicate the 
size of final feature maps. One is the sampling dimension, 
denoted as ds and the other is the gridding dimension, denoted 
as dg. Ablations on these two dimensions have been investigated. 
These two parameters determine the density at which the rails 
in the image are sampled and the number of grids to locate them. 
It is concluded that the larger ds is, the closer the anchor point-
based representation is to the real shape of rails; the larger dg is, 
the more precise the locating of the rails along the direction of 
positioning lines. However, the larger ds and dg are, the more 
parameters there are in the final feature maps. This means 
longer latency to classify in the forward inference process and 
lower optimization efficiency in the training process. Therefore, 
reasonable settings of ds and dg play an important role in 
parameter optimization, reasoning accuracy, and inference 
efficiency.  

The ablation on the sampling dimension is first presented. 
Because of the possible fluctuations that the unsupervised TCL 
design may bring to the network training, only the designs of 
DBA, BTCS, and IRA are employed in the network, the training 
of which does not need to transfer any weights from a trained 
model. As presented in Table II, all the models are trained with 
backbone resnet18 and initialized with a random parameter 
setting with the gridding dimension 100. The sampling 
dimension is taken from 5 to 25 at an interval of 5. As seen from 

the table, all the mF1 and other F1 measures have improved as 
the sampling dimension increased from 5 to 20 and obtain the 
highest performance when ds is taken as 20. But when the 
sampling dimension reaches 25, the performance of the network 
begins to drop significantly from the highest 68.9 to 55.0. 
Therefore, it can be concluded that it is not that the larger the 
sampling dimension is, the better performance the trained 
model will have. Only an appropriate sampling dimension 
setting can make the network have a good performance as 
expected. 
3) Ablation on the Gridding Dimension 

Similarly, the ablation study on the gridding dimension is 
also conducted. The results are shown in Table III. Also, all the 
models are trained with backbone resnet18, sampling 
dimension 10, and random parameter setting for initialization. 
Only the designs of DBA, BTCS, and IRA are adopted for the 
same reason as mentioned above. 

The gridding dimension is taken from 50 to 250 at an interval 
of 50. As illustrated in Table III, the mF1 and other F1-related 
measures of the network all show a trend of increasing first and 
then decreasing similar to the ablation study on the sampling 
dimension. All the F1-related measures achieve the highest 
when the gridding dimension is taken as 200, which are 78.3, 
65.1, 29.9, and 57.8 for F1@30, F1@50, and F1@75 
respectively. However, all these metrics start to drop when the 
gridding dimension is increased to 250. Therefore, it is not that 
the larger the grid dimension, the more beneficial it is to 
improve the network capability. It is analyzed that a quite large 
gridding dimension can lead to insufficient optimization of 
network parameters and thus influence the final extracted 
features for classification although it can locate the rails along 
the direction of the positioning lines more precisely in theory. 
Thus, an appropriate gridding dimension also plays a crucial 
role in improving the network inference capability. 
4) Ablation on the Network Inference Speed 

The proposed architecture is supposed to run on the onboard 
edge computing devices which are carried on a UAV to make 
real-time intelligent reasoning of video streams passed from the 
camera mounted on the UAV. Therefore, the inference speed of 
the network is very important for the onboard deployment of 
the trained model. The speed evaluation in this paper does not 
use any C++ extensions and acceleration toolkits or libraries 
such as TensorRT. 

The effect of several customized designs on the network 
inference speed is studied first, as shown in Table IV. The 
experiments are conducted on an NVIDIA Jetson Xavier NX 
and an NVIDIA Jetson TX2 which are both embedded edge 
computing devices respectively with a sampling dimension of 
15 and a gridding dimension of 150. The inference speed of the 
baseline, the baseline with a single DBA design applied, the 
baseline with a single IRA design applied, and the baseline with 
both DBA and IRA designs applied are tested with different 
backbones, i.e., resnet18, resnet34, resnet50, and resnet101. 
The BTCS and TCL designs are not structural designs on the 
architecture and can only be used during the training process, 
so they will not influence the reasoning latency of the whole 
architecture and thus are not included in this ablation study part. 
As can be concluded from Table IV which gives a series of 
values on frames per second (FPS), the DBA and IRA design 
will cause certain latency to the original baseline models, in 
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which the IRA design will slow down the inference speed more 
than the DBA design. The inference speed becomes slower as 
the larger backbones are adopted gradually. The performance of 
NX is far better than TX2, the reasoning speed of which is 
almost 3-4 times that of TX2. When the DBA and IRA are 
applied to the baseline simultaneously, the NX can still achieve 
an FPS of 33.9 with backbone network resnet18, which is 
sufficient to meet the practical needs for engineering 
deployment. And the TX2 platform can achieve an FPS of 8.9 
under the same network configuration, which also has a good 
reference value for the engineering applications of the proposed 
networks. In general, both NX and TX2 have the expected real-
time performance for our proposed architecture and are fully 
capable of meeting current deployment needs. 

 
Fig. 8. The inference speed test results for both “+DBA+IRA” 
and “+DBS” settings on the embedded edge computing devices 
NVIDIA Jetson NX and TX2. 

Further, the effect of different settings of sampling dimension 
and gridding dimension on network latency is also studied, as 
presented in Fig. 8. The FPS values of different dimension 
configurations on both NVIDIA Jetson Xavier NX and NVIDIA 
Jetson TX2 devices are reported in the form of heat maps. The 
top two heat maps are tested on NX and the bottom two matrices 
are tested on TX2. The two matrices on the left column are both 
with the “+DBA+ IRA” design and the ones on the right column 
are only with the “+DBA” design. As can be concluded from 
Fig. 8, within a certain range, the FPS value of the network has 
a linear negative correlation with the ds and dg basically. The 
inference speed of the network on the NX device is distributed 
in the interval of 27~42 FPS while the speed of the network on 
the TX2 device is distributed in the interval of 6~11 FPS, which 
further shows that the computing power of NX is much higher 
than that of TX2. Comparing the heat maps on the left and right 
sides in Fig. 8, applying the proposed IRA module to the 
network brings only a very limited increase in latency, and will 
not influence the real-time performance of the network greatly. 

D. Comprehensive Comparison 
This paper has also performed a comprehensive comparison 

with some other popular algorithms, i.e. SCNN [24], RESA [48], 
and UFLD [43], which are originally developed for lane 
detection tasks, in terms of recognition accuracy and network 
latency. In all experiments in this section, the two dimensions 

of the proposed network, ds and dg, are configured as 15 and 
150, respectively.  

There are many algorithms developed for lane detection tasks, 
but most of them are not suitable for rail recognition for images 
taken by UAVs in this paper. We also tried to directly use some 
more complicated approaches such as LaneATT [39], 
CondLane [45], PINet [35] for rail recognition, but the test 
results are far from meeting the requirements of the task. To be 
concrete, LaneATT backboned with resnet34 only achieves 
F1@30 of18.88 in the task, PINet only achieves F1@50 of 
20.54, and the training of CondaLane fails to converge despite 
training for a long time. 

It is analyzed that this may be caused by the great difference 
between the lane detection task based on the cameras mounted 
on cars and the rail recognition task based on UAV-mounted 
cameras. Firstly, the changing height of UAVs can cause large 
variations in the pixel width of rails in the image, resulting in 
large fluctuations in their scale presented in the image. Secondly, 
lanes in the images collected by the vehicle-mounted camera 
generally do not change too much, often the lane marker is 
rotated and translated slightly, but the rails in the images taken 
by UAVs may change greatly. The background may be another 
important factor. The background in the lane detection task is 
relatively simple, generally including vehicles and roads only, 
while the backgrounds for the rails in the UAV remote sensing 
images vary greatly which could be various and unpredicted 
especially when the picture is expanded to include the 
surrounding environment on both sides of the railway lines. 
Therefore, those popular algorithms are not suitable for the rail 
recognition task in this paper. UFLD is the baseline model used 
in this paper, SCNN and RESA are the most used segmentation-
based methods, so they are selected as the final comparative 
models. 

As shown in Table V, the mF1, F1@30, F1@50, and F1@75 
are adopted to evaluate the recognition accuracy of the 
proposed attention-aware architecture and other comparative 
algorithms, i.e., UFLD, SCNN, and RESA. UFLD is also the 
baseline model adopted in this paper. The SCNN and RESA 
model series achieve almost the same level in terms of 
recognition accuracy. Their best-performing models achieve 
only mF1 scores of 37.85 and 37.77, respectively. It is analyzed 
that this is because the representation methods adopted in the 
SCNN and RESA models cannot adapt to the rails with variable 
inclination angles, especially those whose inclination angles are 
close to horizontal. Thus, they can only recognize only a part of 
the rails in the datasets with certain inclination angle 
distribution. UFLD models perform the worst among all these 
comparative algorithms. Despite that, our proposed approach 
based on this baseline obtains higher F1-related scores by 
adopting the proposed anchor points-based RRM-PLD, 
outperforming all other algorithms in terms of recognition 
accuracy. Concretely, the proposed TriRNets backboned by 
resnet18, resnet34, resnet50, and resnet101 achieve much 
higher mF1s, i.e., 73.68, 74.68, 74.83, and 73.70. Once the 
proposed architecture designs (DBA and ITA) and network 
training strategy designs (BTCS and TCL) are applied to the 
baseline model, the recognition accuracy of the network is 
greatly improved, which indicates the superiority of the 
proposed designs and formulation. Overall, the size of the 
backbone does not have a great impact on the performance of 
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the network, and a larger backbone network will not bring 
greater gains to the network as expected. A small-size backbone 
resnet18 can satisfy the requirements for efficient feature 
extraction for the images in the constructed dataset. 

The developed models are supposed to be deployed on the 
onboard computers carried by UAVs. Hence, the latency vs. 
accuracy diagram for the different algorithms is presented in 
Fig. 9 to give more intuitive observations on the comprehensive 
performance among all these model series. The top figure and 
the bottom figure correspond to the evaluation results on NX 
and TX embedded computing devices respectively. As depicted, 

these model series can be divided into three levels: low-level 
models, middle-level models, and high-level models. The low-
level models contain the UFLD series, which cannot adapt to 
the rail recognition task. The middle-level models include 
SCNN and RESA series, which can recognize quite a part of the 
rails in the images in the test set. But they are still limited to the 
recognition of the rails that are not close to being horizontal in 
the image. Our proposed architecture is determined as a high- 
level algorithm because it outperforms other algorithms in 
terms of both recognition accuracy and inference latency and is 
completely suitable for practical deployment on the onboard  
 

TABLE I 
THE ABLATION STUDY RESULTS FOR THE PROPOSED DESIGNS: DUAL-BRANCH ARCHITECTURE (DBA), THE BALANCED 

TRANSPOSE CO-TRAINING STRATEGY (BTCS), THE TRANSPOSE CONSISTENCE LOSS (TCL), AND THE INTER-RAIL ATTENTION 
(IRA) MECHANISM WITH SAMPLING DIMENSION 15, GRIDDING DIMENSION 150. 

 
No. model backbone initialize DBA BTCS TCL ITA F1@30 F1@50 F1@75 mF1 
1 baseline resnet18 Rand.     19.51 13.72 4.31 12.51 
2 baseline resnet34 Rand.     19.27 14.34 3.74 12.45 
3 baseline resnet50 Rand.     19.38 14.74 4.14 12.75 
4 +DBA resnet18 Rand.     69.84 57.90 26.31 51.35 
5 +DBA+BTCS resnet18 Rand.     72.22 56.80 50.68 59.90 
6 +DBA+BTCS+TCL resnet18 Para.5     82.09 72.51 46.66 67.09 
7 +DBA+IRA resnet18 Rand.     72.78 59.98 23.36 52.04 
8 +DBA+BTCS+TCL+IRA resnet18 Rand.     83.22 75.13 41.80 66.72 
9 +DBA+BTCS+TCL+IRA resnet18 Para.5     85.49 79.25 56.29 73.68 

 
TABLE II 

THE ABLATION STUDY RESULTS FOR THE SAMPLING DIMENSION WITH GRIDDING DIMENSION 100 WHEN DBA, BTCS, AND IRA 
ARE APPLIED TO THE ARCHITECTURE AND MODEL TRAINING. THE NETWORK PERFORMS BEST WHEN THE SAMPLING DIMENSION IS 

TAKEN AS 20. 
 

No. model backbone initialize ds dg F1@30 F1@50 F1@75 mF1 
1 +DBA+BTCS +IRA resnet18 Rand. 5 100 82.5 71.3 10.5 54.8 
2 +DBA+BTCS +IRA resnet18 Rand. 10 100 77.6 64.2 23.5 55.1 
3 +DBA+BTCS +IRA resnet18 Rand. 15 100 85.0 77.0 42.7 68.2 
4 +DBA+BTCS +IRA resnet18 Rand. 20 100 85.8 79.0 41.9 68.9 
5 +DBA+BTCS +IRA resnet18 Rand. 25 100 73.5 61.1 30.3 55.0 

 
TABLE III 

THE ABLATION STUDY RESULTS FOR THE GRIDDING DIMENSION WITH SAMPLING DIMENSION 10 WHEN DBA, BTCS, AND IRA 
ARE APPLIED TO THE ARCHITECTURE AND MODEL TRAINING. THE NETWORK PERFORMS BEST WHEN THE GRIDDING DIMENSION IS 

TAKEN AS 200. 
 

No. model backbone initialize ds dg F1@30 F1@50 F1@75 mF1 
1 +DBA+BTCS +IRA resnet18 Rand. 10 50 74.8 55.6 8.3 46.2 
2 +DBA+BTCS +IRA resnet18 Rand. 10 100 77.6 64.2 23.5 55.1 
3 +DBA+BTCS +IRA resnet18 Rand. 10 150 75.7 62.8 27.7 55.4 
4 +DBA+BTCS +IRA resnet18 Rand. 10 200 78.3 65.1 29.9 57.8 
5 +DBA+BTCS +IRA resnet18 Rand. 10 250 71.2 52.6 17.8 47.2 

 
TABLE IV 

THE FORWARD INFERENCE SPEED EVALUATION ON THE DBA DESIGN. “NX” MEANS NVIDIA JETSON XAVIER NX AND TX2 
MEANS NVIDIA JETSON TX2. THE FRAMES PER SECOND (FPS) VALUES ARE REPORTED WITH SAMPLE DIMENSION 15, GRIDDING 

DIMENSION 150. 
 

Backbone Baseline +DBA +IRA +DBA+IRA 
TX2 NX TX2 NX TX2 NX TX2 NX 

ResNet18 10.9 40.5 10.5 39.5 9.6 36.7 8.9 33.9 
ResNet34 6.5 23.0 6.0 22.7 5.9 21.7 5.5 20.6 
ResNet50 3.3 12.7 3.3 12.6 3.0 12.1 2.9 11.7 
ResNet101 1.9 7.3 1.9 7.2 1.8 7.1 1.7 6.8 
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NX or TX2. Despite the not-bad mF1 scores for SCNN and 
RESA, they still cannot be deployed directly onto the onboard 
computers because of their too-long inference latency on both 
NX and TX2 platforms. UFLD also cannot be employed to 
accomplish engineering applications due to its far too low 
recognition accuracy. 

TABLE V 
COMPREHENSIVE COMPARISONS BETWEEN SOME POPULAR 

ALGORITHMS WITH “VERTICAL SAMPLING + HORIZONTAL 
POSITIONING” REPRESENTATION AND THE PROPOSED 

ATTENTION-AWARE ARCHITECTURE WITH RRM-PLD. 
 

model backbone F1@30 F1@50 F1@75 mF1 
UFLD ResNet18 19.51 13.72 4.31 12.51 
UFLD ResNet34 19.27 14.34 3.74 12.45 
UFLD ResNet50 19.38 14.74 4.14 12.75 
SCNN ResNet50 40.59 39.85 30.71 37.05 
SCNN ResNet101 41.32 39.85 30.71 36.81 
SCNN VGG16 48.52 46.05 18.98 37.85 
RESA ResNet18 40.51 40.15 26.64 35.77 
RESA ResNet34 41.17 40.44 31.69 37.77 
RESA ResNet50 40.80 40.43 29.87 37.03 

TriRNet ResNet18 85.49 79.25 56.29 73.68 
TriRNet ResNet34 87.98 80.27 55.78 74.68 
TriRNet ResNet50 89.34 80.05 55.10 74.83 
TriRNet ResNet101 87.30 79.37 54.42 73.70 

E. Visual Quality Comparison 
To demonstrate the superiority and excellent performance of 

the proposed algorithm more intuitively, several visual 
examples are given to compare with other models, as shown in 
Fig. 10. SCNN and RESA are backboned by resnet50 and 
resnet34 respectively. TriRNet adopts resnet50 as the backbone 
network. For the vertically or near-vertically distributed rails as 
shown in columns 1-3 in Fig. 10, all three models achieve good 
recognition results. However, for the horizontally or near-
horizontally distributed rails as shown in the first four rows of 
columns 4-6 of Fig. 10, SCNN and RESA have fairly poor 
recognition performance. In contrast, the proposed TriRNet can 
still make accurate predictions of rails with near-horizontal 
inclination angles in UAV remote sensing images. It is analyzed 
that the recognition accuracy is limited by their corresponding 
representation methods and the algorithms themselves. Thus, 
these results have verified that SCNN and RESA are not 
suitable for rails with changing geometric distribution and 
inclination angles from the perspective of UAVs, although they 
have achieved good results in the lane detection task. 
Meanwhile, the results also verify the effectiveness of the 
proposed RRM-PLD based on anchor points and positioning 
lines and the proposed inter-rail attention-guided architecture. 
Rows 2-4 of columns 1-3 of Fig. 10 give samples where some 
rail recognition points are missing for the segmentation-based 
SCNN. This can be caused by the fact that the rails in this case 
have relatively small pixel widths, which can bring a very 
adverse impact on existing segmentation-based recognition 
methods. 

Compared with SCNN and RESA, TriRNet also has good 
performance in detecting occluded rails with high accuracy, as 
illustrated in row 1 of columns 4-6 of Fig.10. The higher 
recognition accuracy further proves the effectiveness of the 
proposed IRA module and network architecture. It is analyzed 
that the IRA module can effectively extract the correlations 

across all rails in the image and fuse the extracted local features 
of a single rail and the calculated global features of all rails to 
obtain accurate identification of the geometric distribution of 
rails in the image. The last row of columns 4-6 gives an example 
that one rail is almost occluded completely by trees. The SCNN 
and RESA model can percept only one rail in the image with 
low accuracy. But our TriRNet can still recognize two rails due 
to the IRA mechanism although the recognition result is not 
very precise. the recognition accuracy of the proposed method 
in the case of tree occlusion still has a relatively large gap from 
the expectation which should be addressed in future works. It is 
worth mentioning that although most of the rails in the images 
of our dataset used in this paper are near-straight lines, this does 
not mean that the proposed architecture is only applicable to the 
near-straight rail recognition tasks. Since the proposed RRM-
PLD has no limits to the shapes of rails, it is especially suitable 
for not only rails but other line-shaped objects that are collected 
from changeable viewing angles and have different distribution 
directions theoretically. This will be further verified in future 
works. 

 

 

 
Fig. 9. The latency vs. accuracy diagram for the different model 
series. The curves on the top figure are all tested on NX device 
and the ones on the bottom figure are all tested on TX2 device. 
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SCNN RESA TriRNet SCNN RESA TriRNet 

Fig. 10. Several visual examples of the proposed TriRNet compared to SCNN and RESA. 

F. Adaptability Test on More Scenarios 
To better evaluate the adaptability to more railway scenarios 

under different environment conditions, datasets RailAug and 
Rail4Track are further constructed. The sizes of them are shown 
in Table VI. RailAug with a larger size is used to simulate the 
different weather, lighting, and movement conditions that may 
occur in the UAVs’ practical railway inspection. It includes the 
augmentation of motion blurring, random rain, random snow, 
random fog, and brightness transforms. Rail4Track contains 
images of the turnout area with a more complex layout and each 
of them is with four rails inside. The resolution of images in 
both datasets is 1920×1080. The 3/4 quantiles of pixel width to 
perform IoU computation are 28 and 21, respectively. 

TriRNet backboned by ResNet34 is evaluated on these two 
datasets. The experimental results presented in Table VII show 
the proposed TriRNet’s good capability to adapt to different 
environmental conditions. As can be seen, under the dimension 
setting of ds=15 and dg =150, TriRNet can achieve mF1 metrics 
of 68.38 and 71.70 on the Rail4Track and RailAug, respectively. 
Especially, when the threshold is taken as 0.3, TriRNet can 
obtain an F1 measure of up to 88.26 and 85.96 on the two 
datasets, respectively. Additionally, to give a more intuitive 
impression of the accuracy of F1’s changing with the IoU 
threshold θ, the F1 vs. θ curves for Rail4Track and RailAug are 
illustrated in Fig. 11. The area under the curve can reflect the 
comprehensive ability of the algorithm. TriRNet backboned by 
ResNet34 can perform almost equally well on the two datasets 
of very different sizes, indicating the great potential of TriRNet. 

Fig. 12 gives more abundant visual samples on the datasets 
Rail4Track (a-c) and RailAug (d-g) by TriRNet-ResNet34. The 

samples of the first two columns of Rail4Track show the good 
capability of the proposed algorithms for the turnout area (Y-
shaped rail area) with a more complex rail layout. All the visual 
examples of Rail4Track have proved the good performance of 
the proposed TriRNet on the scenarios of more rails. More 
randomly motion blurred, brightness transformed, snow-added, 
rain-added, and fog-added examples in RailAug are presented 
in the bottom four rows of Fig. 12. These visual results indicate 
the superior adaptability of the proposed TriRNet to the 
practical UAV-based inspection scenarios under different 
weather, lighting, and UAV’s movement conditions. 

 

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

F1
-s

co
re

θ

 Rail4Track
 RailAug

 
Fig. 11. F1 vs. θ curves for Rail4Track and RailAug. 
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Fig. 12. Visual examples on the datasets Rail4Track (a-c) and RailAug (d-g) by TriRNet-ResNet34. (a) and (d) are original images; 
(b) and (e) are motion-blurred images; (c) and (f) are brightness-transformed images; (g) are images augmented with random snow, 
random rain, or random fogs, respectively. 

In the motion-blurred example given in row (e) of the second 
column of Fig. 12, a prediction point for one rail is mixed with 
the prediction points for another. Despite that, such kind of 
mixed prediction results can be easily refined by some simple 
outlier removal techniques. 
 

TABLE VI 
THE SIZE OF THE TRAINING, VALIDATION, AND TEST SET FOR 

DATASET RAIL4TRACK AND RAILAUG. 
 

dataset training validation test in total 
Rail4Track 1290 270 290 1850 

RailAug 4465 1115 1115 6695 
 

TABLE VII 
EVALUATION RESULTS OF TRIRNET BACKBONED BY 

RESNET34 ON DATASETS RAIL4TRACK AND RAILAUG UNDER 
THE DIMENSION SETTING OF ds = 15 AND dg = 150. 

 
dataset ds dg F1@30 F1@50 F1@75 mF1 

Rail4Track 15 150 88.26 75.65 41.22 68.38 
RailAug 15 150 85.96 79.73 49.42 71.70 

 

The statistical comparison of recognition effect under 
different weathers, line types, rail sections, etc., conditions is 
further investigated on the two datasets, as presented in Table 
VIII. Compared to the original split of the RailAug test set, it is 
evident that inclement weather conditions, i.e., rain and snow, 
can indeed exert a discernible adverse influence on rail 
recognition accuracy. Unexpectedly, the fog split yields a better 
recognition performance. This can be attributed to the fact that 
the simulated fog is thin mists rather than dense fog, which, to 
some extent, mitigates the impact of complex changeable 
background interference in the vicinity of the railways. In the 
presence of motion blurring and brightness change splits, small 
declines in recognition accuracy which primarily occurs within 
the high-reliability recognition requirement zone, i.e., F1@75, 
can also be observed. The dataset is also split into two parts for 
comparison: ballasted and ballastless. It can be seen that the 
accuracy on the ballastless split far surpasses its ballasted 
counterpart and the F1 value even reaches an impressive 98.22 
at an IoU threshold of 0.3 for the ballastless split. Naturally, the 
homogenous and consistent context of ballastless railway lines 
make it more conducive to complete rail recognition with less 
noise interference compared to the ballasted ones. 

(g)

(f)

(e)

(d)

(c)

(b)

(a)
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TABLE VIII 
STATISTICAL COMPARISON OF RECOGNITION EFFECT UNDER DIFFERENT WEATHER, LINE TYPE, RAIL SECTION, ETC., 

CONDITIONS. BECAUSE IN PRACTICE THERE IS STILL A SLIGHT CURVATURE THAT IS DIFFICULT TO OBSERVE FOR SOME OF RAILS IN 
THE DATASET, THE “straight*” HERE IS INTENDED TO INDICATE THAT THE RAILS ARE JUST APPROXIMATELY STRAIGHT. 

Dataset RailAug RailAug Rail4Track 
Category Weather conditions Other transforms Line types Rail sections 

Split rain snow fog blurring brightness original ballasted ballastless straight* turnout 
           

Number 71 75 77 223 446 223 580 535 240 50 
F1@30 81.23 85.41 88.52 86.69 86.01 86.01 74.44 98.22 89.38 82.63 
F1@50 78.50 76.16 81.97 80.09 79.75 80.09 67.11 93.15 81.56 45.79 
F1@75 49.15 41.28 57.05 45.28 50.63 51.19 33.47 66.38 47.40 10.00 

mF1 69.63 67.62 75.85 70.69 72.13 72.43 58.34 85.92 72.78 46.14 
 

Additionally, a comparison was made to assess the impact of 
different rail shape conditions on the recognition effect. The test 
set of Rail4Track was divided into two splits: straight sections 
and turnout sections, as indicated in the last two columns of 
Table VIII. In a general assessment, the recognition accuracy 
within turnout sections consistently falls below that observed in 
straight sections. To be more specific, the composite metric 
mF1 value for turnout sections, at 46.14, is notably lower than 
the one for straight sections, which stands at 72.78. It can also 
be noted that when the recognition confidence is comparatively 
low, particularly with an IoU threshold of 0.3, the F1 score 
remains relatively high, i.e., 82.63. However, as it moves to 
higher confidence intervals, such as IoU thresholds of 0.5 or 
0.75, the F1 score experiences a rapid decrease. It is analyzed 
that the decrease may arise from the potential confusion 
introduced to the model by changes in the order of multiple rails 
present in turnout sections. Additionally, the lower quantity of 
images in turnout sections, as compared to straight sections, can 
also introduce a certain degree of this kind of imbalance that 
could impact the model's ability to achieve robust recognition. 
More images from railway turnout areas are expected to be 
included in the future’s evaluation and experiments to eliminate 
the impact of unbalanced sample size on the model. 

V. CONCLUSION 
This paper mainly discusses real-time rail recognition 

towards UAV-based practical and automatic railway inspection. 
According to the geometric characteristics of rails from the 
perspective of UAVs, a general and adaptive rail representation 
method based on projection length discrimination (RRM-PLD) 
is proposed, which can always select an optimal representation 
direction to represent any kind of rails. Along with that, this 
paper also proposes a novel real-time rail recognition network 
(TriRNet) architecture, in which the proposed inter-rail 
attention (IRA) mechanism can fuse the local features of single 
rails and the global features across all rails to accurately 
discriminate the geometric distribution of rails in a regressive 
way and thus improve the final recognition accuracy. Especially, 
one-to-one mapping from the constructed anchor points to the 
final feature maps for proposal generation is established, which 
can greatly simplify the model design process and improves the 
interpretability of the model. To train the network in a more 
balanced and efficient way, detailed loss designing and model 
training strategies are also introduced.  

Experiments have proven that the proposed formulation can 
recognize rails with any inclination angle in the UAV aerial 
images more efficiently in terms of both reasoning latency and 

recognition accuracy compared to other algorithms. 
Specifically, the proposed TriRNet can achieve an mF1 of 74.83, 
and the inference speed has obtained an FPS of higher than 38 
without utilizing any acceleration libraries, which meets the 
practical requirements of the onboard edge computing devices. 
It is also worth noting that the rail recognition architecture 
proposed in this paper has excellent universality and can be 
transferred to accomplish the detection of other linear-shaped 
structures in theory. It provides a significant reference for the 
detection of other line-shaped structures. More investigations 
will be conducted to verify the engineering usability, practical 
performance, model robustness of the proposed algorithm in the 
future to better adapt to more challenging railway scenarios. 
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