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Abstract. At present, the manual inspection along railway lines is still a ma-

jor method to ensure railway operation safely, but the cost is high and work ef-

ficiency is low. Therefore, unmanned aerial vehicles (UAVs) patrol inspection 

is required. This paper presents the effective segmentation of scenes along rail-

way lines (SRL) from remote sensing perspective of UAVs based on the full 

convolutional networks (FCN). Firstly, the datasets needed in this research are 

collected and produced from Langfang section of the Beijing-Shanghai high-

speed rail-way. The datasets are expanded by using data augmentation to con-

strain the overfitting in the training process. Secondly, the segmentation model 

FCN-8s for SRL is developed and trained. The related setting and hardware en-

vironment in the training process are described in this paper. The experimental 

results show that a single image prediction needs 151.2ms, to achieve 6.6 fps 

when input size is 384384. Good accuracy is obtained on the test dataset, i.e., 

55.8% MIoU and 70.2% MPA, which meets the expectations of FCN. At the 

same time, it is also found that the segmentation of railway area achieves the 

best result thus the railway area is extracted accordingly. 
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1 Introduction 

In recent years, the UAVs remote sensing technology has been applied to the trans-

mission line inspection [1], and it also provides a fast and effective means for the 

inspection of railway lines. While in the patrol inspection work, images collected by 

UAVs are broad, rich in content and high in resolution and both railway infrastructure 

and surroundings have vital impact on the safe operation of the railway. Therefore, 

the segmentation and extraction of SRL based on UAVs remote sensing plays an im-

portant role in the safety of monitoring railway lines. 

In the future, computer vision will become a key tool for the analysis of images 
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collected by patrol inspection of UAVs along railway lines. As a branch of computer 

vision, semantic segmentation technology will provide strong support for the segmen-

tation of scenes along railways. Long et al. proposed FCN [2] for image semantic 

segmentation by adapting the structure of VGG [3] model and add some upsampling 

layers. On this basis, many models are developed to improve accuracy with different 

techniques [4-11]. In the work of segmentation of railway scenes using semantic seg-

mentation techniques, Wang et al. proposed an architecture for segmentation of rail-

way regions and optimized contours of orbital regions using polygonal fitting method 

[12]. He et al. also proposed a semantic segmentation network for segmenting railway 

scenes and verified the superiority of the network over UNet and FCN networks [13].  

However, all these works don’t put too much attention on ensuring the safety of 

railway operation. Furthermore, railway scenes defined in Ref. [12-13] are very dif-

ferent from this research. We concentrate on SRL from the perspective of UAVs 

while they define railway scenes from the perspective of train cabs. Because FCN is 

the base model of many of the above models, this study aims to achieve effective 

segmentation and further extraction of SRL by using FCN model. 

2 Dataset 

2.1 Build of Dataset 

Three predefined locations, i.e. areas A, B and C of the Langfang section of the Bei-

jing-Shanghai high-speed railway, are selected for image collection and the weather 

conditions are very well on the day of collecting images. According to the require-

ments of visual range and resolution of the captured images, the flying height of 

UAVs is set between 80m and 200m. After images collection, images with resolution 

36485472 (hw) of SRL are selected, removing inapplicable ones that are repeat-

ed, blurred, and angularly offset. 220 images from 430 selected images are used to 

create semantic segmentation datasets for segmentation of SRL, in which 200 images 

collected from A and B are used to build the training and validation dataset, and 20 

images left collected from C are used to build test dataset. 

In the built dataset, scenes are classified into five categories: background, build-

ings, vegetation, railways and roads, i.e., every pixel in images from the dataset is 

labelled as one of the above categories. In order to improve the efficiency of labelling 

process, all original images are scaled to 512768 and all annotations are implement-

ed using the image annotation tool LabelMe. 

In the annotated images, colour black represents background, and colour red, 

green, yellow, and blue represent buildings, vegetation, railways, and roads respec-

tively. These annotated images need to be converted to grayscale images when train-

ing the model. 

2.2 Data Augmentation 

At present, there are still many difficulties to collect images of SRL with UAVs and 

the amount of 220 images in the built dataset is far from enough for the training of 
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deep learning model. In order to improve the training effect, constrain the overfitting 

in the training process and improve generalization ability of the model, the annotated 

dataset is expanded by using data augmentation. 

 

Fig. 1. Examples of data augmentation. 

The built dataset can be expanded to 17 times of original size with rotating & horizon-

tal mirroring operation (8 types), brightness transformation operation (4 types) and 

cropping operation (5 types) of the original images and annotations respectively. 

Among them, the rotation and horizontal mirroring operation include 8 types in all, 

i.e., horizontal mirrors (yes, no) × rotation angle (0, 90, 180, 270) where the initial 

image is represented when the rotation angle is 0 and horizontal mirroring is not used; 

brightness transformation operation include 5 types in all, i.e., brightness (0.5, 0.8, 

1.2, 1.5); cropping operation include 5 types in all, i.e., cropping position (bottom left, 

bottom right, center, top left and top right). Part of the data augmentation process are 

shown in Fig. 1. For ease of display, the images are scaled to a square shape. Through 

above operations, 3400 images are obtained for training and validation and 340 imag-

es for test. 

3 Segmentation Model for SRL 

3.1 Network Architecture of the Model 

The FCN model can use a variety of network architecture as its encoder [11], the 

key part of which is the convolutionalization1 of fully connected layers and upsam-

pling layers. In the Ref. [2], the authors use different network architectures to com-

                                                           
1  For further understanding about the word “convolutionalization” in Fig. 2 of Ref. [2]. 



4 

pare achieved accuracy, among which the FCN network based on VGG [3] model 

performs best. Besides, the authors adopt different skip structures in the process of 

upsampling to the resolution of the input image, i.e., FCN-32s, FCN-16s and FCN-8s, 

and point out FCN-8s achieves best accuracy. Therefore, FCN-8s model based on 

VGG-19 is implemented in this paper, which means there is no difference in the first 

five convolutional and pooling modules between VGG-19 and FCN-8s here, i.e., 

modules A to E shown in Fig. 2. Also, it is modules from A to E to fine-tune in the 

transfer learning process which will be mentioned further in the following section 3.2. 

Subsequent three modules F1 to F3 are all adapted from fully connected layers in 

VGG-19. 

 

Fig. 2. Network architecture of segmentation model for SRL. 

As illustrated in Fig. 2, three upsampling layers are built in the model to increase the 

resolution of feature maps. The first two upsampling layers restore the resolution of 

feature maps to 1/16 and 1/8 times of resolution of the original input images respec-

tively, while the third one restores the resolution of input image completely. Obvious-

ly, we know that there is the same resolution between the input image and the output 

image. The results of upsampling layers are fused with the corresponding pooling 

layers in the encoder [2, 11], combining fine local features in the lower layers and 

coarse global features in the higher layers to achieve precise feature extraction. The 
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two fuse layers are obtained by adding the upsampling layer and corresponding pool-

ing layer. Transposed convolution is an important way to achieve upsampling. In this 

paper, upsampling is implemented with transposed convolution and deep learning 

framework TensorFlow is used to implement FCN-8s model.  

3.2 Training of the Model 

Transfer Learning & Cross Validation. Constantly fine-tuning the weights from a 

pre-trained model is one of the main ways of transfer learning [14]. In addition, it is 

higher layers to be fine-tuned not lower layers since the lower one tends to contain 

more generic features that most models share. It is also important to choose an appro-

priate learning rate, generally a smaller one, when using transfer learning. 

In this paper, the pre-trained model VGG-19 is used to accelerate the training pro-

cess. The initialization of the parameters of the FCN-8s network model is finished by 

transforming fully connected layers of VGG-19 to convolutional ones and randomly 

initializing other newly built higher layers, e.g., unsampling layers, etc. In the subse-

quent training process, training of the model is completed by continuously fine-tuning 

the parameters in the network with smaller learning rate, especially the high-level 

parameters that are randomly initialized. 

Cross-validation is a method to evaluate the performance of a model. It is mainly 

achieved by dividing dataset into training part and validation part with different com-

position. In this paper, K-fold Cross Validation method is adopted to evaluate FCN-8s 

model. The idea of cross-validation is to divide the dataset into K parts equally, then 

each of the equal parts is used as validation dataset in turn and the remaining equal 

parts used as training one respectively. In such case, K trained models can be obtained 

through multiple training processes. And the average of the accuracies of K models is 

used as the final performance indicator. In this paper, K is set to 10. 

Setup & Environment. The images in the original built dataset are all scaled to 

512768. In order to speed up the training process, the input image is further scaled 

to a square shape 384384 into the model during the training process. Some other 

hyperparameter settings are shown in Tab. 1. The selected Batch Size and Learning 

Rate are 2 and 10-4 respectively and the setting of Iterations No. depends on the train-

ing process till the model converges. 

Table 1. Hyperparameters setting in the training process. 

Hyperparameters Batch Size Learning Rate  Iterations No. 

Value 2 10-4 Convergence 

The training process is finished on the NVIDIA RTX 2080 GPU. All experiments 

were performed in the TensorFlow deep learning framework, and the model were 

trained until the loss function converges. And we use the cross-entropy loss function 

as objective function. In the input mode with a batch size of 2, the total loss is the sum 
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of the losses of all pixels of all images in the input batch. Training process employed 

Adam optimizer with a dropout rate of 15% in every convolutional layer of the net-

work. 

4 Segmentation & Extraction of SRL 

4.1 Experimental Results 

Runtime of the Model. After calculation, the running speed of the model built in this 

paper is summarized in Tab. 2. A single image prediction needs 151.2ms, achieving 

6.6 fps when input size is 384384. 

Table 2. Runtime and environment of the model. 

GPU framework input size run time fps 

NVIDIA RTX 2080 TensorFlow 384384 151.2ms 6.6 

Accuracy on Validation Dataset. As shown in Tab. 3 and Tab. 4, mean values of the 

10 trained models’ evaluation metrics is obtained through cross-validation and seg-

mentation performance of SRL is perfect. Since MIoU is a standard metric for seman-

tic segmentation tasks, cross-validation results for different classes of IoU are listed 

here in particular, as shown in Tab. 4. From Tab. 4, it is illustrated that IoU of the 

railway area is the highest and the segmentation performance is the best, which has a 

close relationship with more regular geometry shape and specific color characteristics 

of the railway area. Prediction results on validation dataset is shown in Fig. 3 (a) and 

perfect performance on segmentation work is realized as we can see. 

Table 3. Cross-Validation results on validation dataset. 

Metrics PA MPA MIoU FWIoU 

Mean value 91.3 90.5 81.9 84.5 

Table 4. Cross-Validation results of all classes on validation dataset. 

Class background building plant railway road 

 Mean of IoU 75.7 72.6 88.0 92.2 81.8 

Accuracy on Test Dataset. Since the images in test dataset are collected in area C, 

which is different from the images from training set and validation dataset (A and B), 

the evaluation on the test dataset seems to be more objective and accurate, as shown 

in Tab. 5. Compared with the accuracy metrics on the validation dataset, the accuracy 

metrics on the test dataset has a certain decline, but still meet the expectation on the 

accuracy FCN architecture can achieve itself, which is 56% [3]. As illustrated in Tab. 

6, the IoU value of the railway area on the test dataset is still much better than the 

other classes, which maintains a high level compared to the results on the validation 
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dataset. This objectively and realistically shows that the built model is better for seg-

mentation of the railway area than other classes. Prediction results on test dataset is 

shown in Fig. 3 (b). However, there is still some fault predicted part, e.g., predicting 

part of road area as railway and predicting part of building area as road. 

Table 5. Cross-validation results on test dataset. 

Metrics PA MPA MIoU FWIoU 
Mean value 70.9 70.2 55.8 56.9 

Table 6. Cross-validation results of all classes on test dataset. 

Class background building plant railway road 

 Mean of IoU 53.3 39.8 57.2 78.6 52.3 

 

Fig. 3. Prediction results on validation and test dataset. (a) validation part. (b) test part. 

4.2 Extraction of Railway Area 

According to the segmented image that segmentation model for SRL predict, the dif-

ferent SRL can be extracted separately. Since the model has a high accuracy for the 

segmentation of railway area, the railway area is extracted here. As illustrated in Fig. 

4, the left image is an annotation of some image in the dataset; the right image shows 

that three areas filled in white are different regions of the same class: green rectangle 

represents a rectangle that can include a target subarea along horizontal and vertical 

axis directions of the image, respectively; red rectangle represents a rectangle that can 

include the a target subarea and has also the smallest area. Some concepts covered in 

this section are defined as follows: 

Rectangular Subgraph: a rectangular part obtained by cropping images in the hori-

zontal and vertical axis directions, e.g., rectangles in green in Fig. 4(b). 

Target Subarea: a rectangular part which includes one of the regions representing 

the same class and has the smallest area, e.g., rectangles in red in Fig. 4(b). 

Mask: a grayscale image with the same resolution with the initial image, in which 

only specific region’s values of pixels are set to 1 and the remaining set to 0. 
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Sub-mask: Mask corresponding to a specific Rectangular Subgraph. 

Sub-label: the label image or predicted image of a specific Target Subarea, that is, 

the corresponding part that Target Subarea reflect on the original label image or the 

predicted image. 

 

Fig. 4. Concepts for Rectangular Subgraph, Sub-mask, Target Subarea and Sub-label. (a) A 

grayscale label image from the built dataset. (b) Key rectangular areas with different meanings. 

The extraction process of Target Subarea No. 1 is displayed on the top area. 

It is easy to find that the Target Subarea is contained in its corresponding Rectangu-

lar Subgraph. Suppose original image as IMG and corresponding label image or pre-

dicted image as LBL. For a specific Target Subarea, suppose the Mask corresponding 

to the inner area of its green rectangle as MGi, the Mask on corresponding to the inner 

area of its red rectangle as MRi and the Mask on LBL corresponding to its all pixels 

belonging to the current class as MLc. As shown in Fig. 5, the extraction process of all 

the railway regions can be expressed as follows: 

Step 1: Extract the Rectangular Subgraph from the original image, i.e., subgraph. 

 ( ) ( )MGi
subgraph i Crop IMG=  (1) 

Step 2: Extract the part that MRi falls on the subgraph, i.e., submask: 

 ( ) ( )MG i ii
submask i Crop MG MR=   (2) 

Step 3: Extract the Target Subarea, i.e., subarea: 

 ( ) ( ) ( )subarea i submask i subgraph i=   (3) 
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Step 4: Extract the Sublabel corresponding to the Target Subarea, i.e., sublabel: 

 ( ) ( ) ( )MGi csublabel i submask i Crop LBL ML=    (4) 

 

Fig. 5. The extraction of railway area. The subgraph, submask, subarea and sublabel here 

corresponding to the concepts in step 1-4. 

In all above formulas, CropM(i)() represents cropping the image in parentheses ac-

cording to the rectangle indicated by M(i) and the rectangle is required to be in the 

horizontal and vertical axis directions, while i represents the i-th aggregation area of 

the pixels belonging to class C. The process of extracting the railway area is illustrat-

ed in Fig. 5. Two corresponding sets of Rectangular Subgraph, Sub-mask, Target 

Subarea and Sub-label are respectively extracted.  

5 Discussion and Conclusions 

Efficient monitoring of SRL can ensure effective and safe operation of railway. This 

research combines patrol inspection of UAVs and semantic segmentation techniques 

with safety monitoring along the railway for the first time. Segmentation and extrac-

tion of SRL based on UAVs remote sensing images is realized in this paper and the 

experimental results have demonstrated the effectiveness of the built model. In further 

work, the accuracy of the model needs to be improved. At the same time, the runtime 

of the model needs to be further reduced to meet the practical needs. 
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